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Abstract

Constrained automated seeded region growing (CASRG) is an algorithm for automated grain boundary detection. It uses as input a single
digitised microphotograph, such as ones obtained from a polarising microscope with an attached digital camera. In addition to this, it requires the
user to click on the clasts within the microphotograph that the user wishes to obtain boundaries for. The algorithm requires no subsequent human
input. The algorithm is based on the seeded region growing (SRG) algorithm of Adams and Bischof [Adams, R., Bischof, L., 1994. Seeded region
growing. IEEE Transactions on Pattern Analysis Machine Intelligence 16, 641-647]. We have modified this algorithm to be guided by constraints
and to adapt to the heterogeneity of colour information in the image. Imposition of these pre-determined additional conditions enables automated
grain boundary detection without human intervention. The accuracy of CASRG has been validated through two benchmarking comparisons; one
lithology with low tectonic strain and a second with high strain are used. The CASRG measurements are compared with those from hand drawn
boundaries, which are used as a gold standard. Comparison is made using (a) a non-overlap statistic, (b) shape features, (c) strain estimates. In each

case, the CASRG method compares very favourably with the gold standard.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Strain analysis and the study of regional strain patterns are
invaluable tools in interpreting the tectonic history of a region.
However, in considering 12 recently published studies, a wide
variability in sampling density for finite strain characterisation
is demonstrated. The data in Table 1 indicates that,
independent of the size of the study area, there is an upper
limit of around 30 to the number of samples used. This results
in very low sampling densities when the study area becomes
large. There might be a number of reasons for this observation,
e.g. homogeneity of deformation in an area, availability of
suitable exposure, etc. However, we believe that the primary
reason is the laborious and time consuming methods available
for obtaining the raw data required for strain analysis.

There is one notable exception to the 30 sample limit
provided by the study of Mukul and Mitra (1998). They
analysed 119 samples of quartzite from an area of 200 km?
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around the Sheeprock Thrust Sheet, Sevier Fold-and-Thrust
belt, Utah, USA. However, they employed a semi-automatic
procedure for obtaining the data for strain analysis as described
by Mukul (1998). In this paper we develop CASRG, a semi-
automatic algorithm for strain analysis that enables rapid and
accurate extraction of data for strain analysis. Automation of
this process will allow strain analysis studies to break the 30
sample limit and introduce the possibility of statistical analysis
of spatial strain variation, as in Mukul (1998). This paper
concentrates on the problem of extracting data for strain
analysis from sandstones and looks at deformed examples from
the Variscides of southwest Ireland (Meere, 1995) and the
Moine of northwest Scotland. The CASRG algorithm will yield
data that is applicable to strain analysis methods based on
marker shape (e.g. the mean radial length method of Mulchrone
et al. (2003)) and to methods based on the relative position of
markers such as those by Fry (1979) and Mulchrone (2003).
Traditional methods of measurement required sustained use
of the polarising microscope with skilled manipulation of the
rotating stage and knowledge of the use of various graticules
(Ramsay, 1967, section 5.2). With the proliferation of digital
cameras, it is now common place to obtain digital images of a
field of view as seen through the microscope (Fig. 1a). Digital
images are easily manipulated by computer graphic software
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Table 1
Area, number of samples and sampling density for a selection of recent studies
which included strain analysis, at least in part

Author(s) Study area No. Samples ~ Samples per
(km?) km?
Meere (1995) 70 23 0.32
Srivastava et al. (1995) 25%107° 4 1.6X10°
Yin and Oertel (1995) 12 8 0.66
Mukul and Mitra (1998) 200 119 0.59
Roig et al. (1998) 500 8 0.02
Bresser and Walter (1999) 180 15 0.08
Althoff et al. (2000) 800 6 0.01
Hippert and Davis (2000) 12 9 0.75
Hippert and Davis (2000) 18 3 0.16
Hippert and Davis (2000) 4 6 1.50
Simancas et al. (2000) 60 28 0.46
Gonzalez-Casado and 2000 37 0.02
Garcia-Cuevas (2002)
Mulchrone (2002) 55 18 0.33
Bailey and Eyster (2003) 14 8 0.57

packages that allow the outline of clast boundaries to be easily
traced. Alternatively the boundaries may be manually traced
from a printout and then scanned into a digital image (i.e. as
suggested by Mukul (1998) and Mulchrone et al. (in review)).
Given a set of such boundaries, it is possible to make the
measurements required for strain analysis either manually or
using automated methods (Mulchrone et al., in review).
Although methods that require manual identification of
boundaries represent a striking improvement on totally manual
methods for data extraction, there is room for further
improvement. The primary aim of automatic clast boundary
detection is to remove the manual step of marking boundaries.
The task is especially onerous if one is engaged in a strain
mapping study, where thousands of clasts have to be marked for
reliable measurements of strain. Concomitantly, one is also
seeking increased speed and accuracy in making strain
measurements (Meere and Mulchrone, 2003). Speed is guaran-
teed not so much by the efficiency of the algorithm itself, as by the
increase in processing power of computers. The issue of accuracy
is of course paramount in any scientific endeavour. Given the
nature of the current problem, clasts will always exist where
manual marking of boundaries will be better than any automatic
identification algorithm. In fact, given time, patience and

practice, manual marking will be at least as good as the best
automatic clast boundary detection algorithm. In practice,
however, lack of dexterity with the mouse or pen can cause
manually identified boundaries to deviate from the true boundary
of the clast. In most cases, these errors will be negligible in terms
of the accuracy of measurements made on the clast. Therefore, the
aim is to develop a method that will deliver parameter estimates
which are close (in an average sense) to those obtained by careful
manual marking.

Previous work on automated clast boundary detection (e.g.
Heilbronner, 2000; Ailleres et al., 1995; Bartozzi et al., 2000),
demonstrates the difficulty of the problem. These papers address
the difficulty by introducing extra information about the grain
boundaries: for example Heilbronner (2000) has utilised multiple
images of the same field of view and Bartozzi et al. (2000) use
SEM images. Automatic clast boundary identification from a
single image is an even harder problem. Clasts will be adjacent to
each other and appear to be the same colour (e.g. in Fig. 1b, clasts
10 and 11). It will be very difficult to tell these apart. Fortunately,
for strain measurement, we do not have to measure all clasts, but
only enough for an accurate strain analysis (around 150 according
to Meere and Mulchrone (2003)). In any given thin section image,
there will be some clasts that appear well defined due to a sharp
colour contrast with their immediate neighbourhood. It is the
boundaries of these clasts that we will seek to identify.

2. Region based identification

Previous work on automatic clast boundary identification
(e.g. Heilbronner, 2000; Bartozzi et al., 2000) utilise edge-
detection based methods to identify the boundary of the clasts.
Typically the initial boundaries produced by edge detection
have many imperfections (some edges occur within the clasts
as well as on the actual boundary and sometimes edges are
absent on the real boundary). These initial boundaries are then
post processed to obtain more realistic boundaries. While this
approach appears to work satisfactorily for measurements such
as clast count and clast size distribution, the subjectivity
introduced by the post processing methods make them
unsuitable for strain analysis, where crucial parameters are
commonly the physical orientation of the clast (as opposed to

Fig. 1. (a) Original microphotograph. (b) Hand drawn boundaries.
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the c-axis orientation), aspect ratio or relative location. An
alternative approach is taken here, where instead of directly
identifying the boundary, we identify a ‘region’, i.e. a set of
points that purportedly belong to the clast. From an image
processing perspective, region and edge based methods are
equivalent. Instead of imperfections in the clast boundary by
edge detection, we have holes in the identified clast (see Fig. 5).
But for extracting features like major and minor axes,
orientation, centroid, etc., the presence of these holes has a
far diminished role to play than incorrectly identified edges.
Consequently, no post processing is required in this approach.
In other words, the region based method of identifying clasts is
potentially more convenient for an automated feature
extraction algorithm.

2.1. Seeded region growing algorithm

In the previous section, we have already mentioned that we
are interested in identifying a few well-defined grains per field
of view. The most convenient method in image processing for
identifying a few well-defined regions in an image is the seeded
region growing algorithm (SRG) (Gonzalez and Wintz, 1987;
Adams and Bischof, 1994). The basic idea in SRG it to start
with a point (or seed) which we know belongs to the region of
interest. The region is then grown by adding points that are
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similar to the seed. In our variation we deal with one grain at a
time, as follows:Basic SRG algorithm

1. Select a seed point. It is added to a queue called a sequential
search list (SSL).

2. Remove a point from the SSL. Look at the neighbouring
points of this chosen point. If they are similar to the region
already grown, add them to the region (and the SSL). If they
are not, add them to the boundary of the region.

3. Repeat step 3 till the SSL is exhausted. At that point, we
have our region identified.

2.2. Selecting seeds

It remains to describe how the seed points are selected and
how we judge if a point is similar to a region. The seed is
selected by the user. The user looks at the picture of the thin
section and selects the grains they want to identify by clicking
at a point somewhere inside the grain of interest. Although this
procedure requires human intervention, the clicking itself takes
very little time to accomplish. There is very little subjectivity
involved, since the algorithm produces more or less the same
result no matter where in the region you click, provided the
region is of reasonably uniform colour. The effort of the user
(and also the subjectivity) is in identifying suitable grains for
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Fig. 2. (a) Threshold too low. (b) Threshold too high. (c) Optimal threshold. (d) Distribution of optimal thresholds across grains.



366 K. Roy Choudhury et al. / Journal of Structural Geology 28 (2006) 363-375

clicking. Apart from utilising the excellent perception of colour
contrast in humans, this step also allows the user to incorporate
their expert knowledge of the fabric. For instance they may
want to avoid certain grains that appear polycrystalline or
belong to a different mineral than the one currently of interest.

2.3. Testing pixels for similarity

The basic idea behind ‘testing’ a pixel is to judge whether it
is similar, in a sense to be defined, to pixels already identified to
be within the region. There are a variety of criteria available for
judging whether a point is similar in colour to a region
(Haralick and Shapiro, 1985). The criterion of similarity used
in this study is now described.

Colour information can be recorded in many different
formats. Here it is viewed as a three-dimensional vector ¢ =
(cr,cg,c) With each component giving a level (between 0 and
1) of Red, Green or Blue. Thus (0,0,0) would be Black (absence
of all colour), (1,0,0) would be Red, (1,1,1) would be White,
etc. A simple way to compare whether a point p; and a region R
are of similar colour is by measuring the Euclidean distance
between their colour vectors ¢, and ¢:

d(c,,0) = \/(CIR_ER)Z + (c16 —¢g)* + (c1p —@p)?

Here the colour of a region is represented by its average
colour value ¢. This is just the average of all the colour vectors
belonging to points in the region.

In step 2 of the SRG algorithm, we judge whether a new
point belongs to the current region R, we need to check whether
this distance is above or below a certain threshold ¢, i.e.

piER if d(c,d)<t

The choice of threshold is delicate: it should be such that it
will be large enough to allow for natural variation within the
region (even relatively uniform regions will have some
variability in colour information), but small enough to be
able to detect a change from points outside the region. Thus, if ¢
is too small, the identified region will be too small and vice
versa (see Fig. 2a and b). The choice of optimal ¢ can be made

(a)o.a v r -

by trial and error (by a visual comparison of the identified
region to the original picture). Because of a variety of colours
and brightness levels present in the same image, different
grains may have substantially different optimal thresholds.
Fig. 2d presents the distribution of optimal thresholds for the
grains identified in Fig. 1b. Classical SRG (Gonzalez and
Wintz, 1987) uses a single threshold value for all grains. Given
the big range of thresholds and the relative sensitivity of grain
identification to the choice of threshold (as demonstrated in
Fig. 2a—d), we need to choose the optimal threshold separately
for each grain. However, to set the optimal threshold manually
using the trial and error method may be quite time consuming.
Thus the need arises for an automated method of choosing the
optimal threshold.

2.4. Automated choice of threshold

It is possible to choose the optimal threshold without human
intervention. The choice of optimal threshold is guided by the
level of variability present in the interior of the clast. The less
variable a region, the lower the threshold required. Variability
inside a region can be measured by the generalised coefficient
of variation, which is defined as follows:

CV(R) = \/ﬁ Do (_CRi_5R>2 N \/% D (_CGi_EG)Z
cG

CrR
\ 1y (CBi _53)2
+ -
CB

Here the sum is overall n pixels i in the region R. Colour
data typically have skewed distributions, where brighter
regions will have correspondingly higher variances. In order
to adjust for varying levels of brightness across clasts, we need
to scale the variance by the average brightness level of the
region. It may seem natural to calculate the CV for the region
that has been grown, but, in practice, this will always give a
low value. This is because the region growing algorithm will
always select pixels of similar colour information, which
means that the region grown by SRG will always have low
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Fig. 3. (a) Generalised coefficient of variation (CV) as a function of threshold. (b) Grains 10 and 11 of Fig. 1b at optimal threshold before application of constraints.
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variability. For instance, imperfections in the grain are
excluded from this calculation. Instead, we have found it
more useful to calculate the CV for an area which encloses the
grown region. The principle is as follows: if the grown region
includes primarily all or part of a grain, the enclosing region
should have a low CV overall; if, on the other hand, the region
spans two or more grains and/or inter-granular matter, which
have different colour schemes, the enclosing region would have
a high CV. For our convenience, we have used a fitted ellipse as
the enclosing area, but one could choose any other shape, such
as a rectangle or a convex hull, to the same effect. The
important requirement is that the enclosing shape be as tight as
possible to the identified region.

As an illustration of this idea, clast 4 in Fig. 1b has an
approximate generalised CV of 0.35, whereas the overall CV
for the whole image is 0.75. This low variability inside a grain
can be utilised for optimal threshold selection. For instance, a
low threshold will yield a small region inside a grain, as in
Fig. 3. In this case the CV is 0.27. A larger threshold will yield
a larger region, but as long as this region is within the grain, as
in Fig. 2c¢ (CV =0.35) the CV will not increase substantially.
Once the region exceeds the grain, as in Fig. 2d the CV rises
sharply to 0.55. This behaviour is shown in Fig. 3a. Based on
this property of the CV statistic, a grain can be characterised as
the maximal region with a CV less than a given cutoff CV
value. The choice of this cutoff will depend on the variability in
the image. For the image in Fig. l1a (and other similar images),
we have empirically established that a cut-off CV value of
around 0.4 works satisfactorily.

2.5. Imposition of additional constraints

The automated region growing algorithm described above
should work well when we have sharp contrast between the
grain and its immediate neighbourhood. However, when we

have two grains of similar colour side by side, as for instance in
the case for grains 10 and 11 in Fig. 1b, it will be hard to
separate them based on variability alone. In this case the CV of
the region combining the two grains (shown in Fig. 3b) is
around 0.33. So how can one separate them? To do so, we
utilise the information provided by the user in the seeding
process. By seeding both grains, the user is instructing the
program to grow them separate from each other. Therefore any
threshold that generates a region containing two or more seed
points is too large for the job.

As a general principle, when we have situations where the
colour contrast alone is not sufficient to delineate a clast, we
must make use of additional constraints, such as user input as
described above, or other constraints such as size or shape. The
downside of this is that imposition of such constraints often
needs additional user input. However, in this case, we are
fortunate that the information required is already supplied
during the seeding process. This may not always be the case. In
this case, we may need to supply additional constraints in the
form of ‘spoiling seeds’, i.e. seeds supplied purely for the
purposes of limiting the size of the automatically identified
region.

The discussion in Section 2 can be summarised in the
following algorithm:Constrained automated seeded region
growing (CASRG) algorithm:First, the user selects seeds
(numbered 1-k) and a set of spoiling seeds (1-j). For each
seed in this list, the following (automated) loop is carried out:

. Fix threshold ¢
. Grow region by SRG at threshold ¢
. Compute CV of grown region
. if (CV <cutoff) increase threshold;
else decrease threshold
5. check for constraints (and modify threshold appropriately)
6. Iterate steps 1-5 to convergence of threshold.

A W =

Fig. 4. Regions identified by CASRG with hand-drawn boundaries from Fig. 1b superimposed.



368

The algorithm has been coded for the MATLAB®
environment (www.mathworks.com). This code can be down-
loaded from http://euclid.ucc.ie/pages/staff/kingshuk/casrg.
zip. Users should be aware that to run this code they need to
have the MATLAB Image processing toolbox installed.

3. Methodology for the validation of CASRG

The result of applying the CASRG is shown in Fig. 4. With a
few exceptions, the identified regions are broadly similar to the
clast boundaries outlined in Fig. 1b. However, there are
significant differences. The CASRG identified regions are full
of holes that represent areas of non-uniform colour within the
targeted clasts. While small holes can be dealt with easily by
employing simple morphological operations such as ‘closing’
(see e.g. Matheron, 1975), larger holes are not as tractable.
However, such holes do not seriously affect the value of many
quantitative features obtained from these regions. Another
difference is that many identified regions have appendages that
lie outside the actual clast boundary. This is primarily due to
the presence of areas of similar colour adjacent to the clast.

While visual inspection of the results gives us a rough idea,
‘objective’ measures of the quality of region fit are essential to
make accurate comparisons. Of course, to measure the quality
of fit, we need to know the ‘true’ regions. As with most real
problems there are no ‘absolutely true’ regions available to us.
However, in the introduction, we have argued that the manually
drawn boundaries, if carefully drawn by an expert, are
potentially the closest approximation to the grains in the field
of view. Therefore, we will use the hand drawn boundaries, for
example those in Fig. 1b as the ‘gold standard’ against which to
compare the CASRG regions.

We will evaluate three different aspects of the quality of fit:

(a) The ‘non-overlap’ of the CASRG regions with the ‘gold
standard’

(b) A comparison of extracted features between CASRG
regions and the ‘gold standard’

(c) Comparison of strain estimates from CASRG regions and
the ‘gold standard’

(a)
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3.1. Non-overlap statistic

Given two regions A and B, the non-overlap statistic
no(A,B) (Mulchrone et al., in review) measures the area where
the two regions do not overlap. The non-overlap area is divided
by the area of B (the base area) to express the non-overlap as a
scale-invariant proportion. Mathematically, this statistic can be
expressed using the symmetric difference of two sets:

area((A—B)U (B —A))
area(B)

no(A,B) =

The non-overlap statistic is a unit-less quantity that can be
used to measure how similar (in shape, size and location) two
regions are to each other. If two regions are identical, their non-
overlap should be zero. The bigger the non-overlap, the more
they are dissimilar. It is possible for the non-overlap to be
greater than 1 (for instance, if A and B do not intersect with
each other), but that would indicate a pretty bad fit. Fig. 5b
shows us the distribution of the non-overlap values for regions
drawn using CASRG (Fig. 4) versus those drawn by hand
(Fig. 1b), with the hand drawn regions used as the base area B.
The majority of the regions have a non-overlap statistic
between 15 and 55%. Two values are between 65 and 80%. The
average (median) value is 36%. While these values do not have
an immediate interpretation, these values can be used as a
benchmark for future algorithms to improve on.

3.2. Feature based comparison

The primary application of CASRG in structural geology is
for the purposes of mensuration of clasts. Common features
requiring mensuration are the area, centroid, major and minor
axes and the orientation of each clast. Apart from their
relevance to procedures such as strain analysis, these features
are intrinsic geometric properties of the objects, which describe
their shape, size and location. Therefore comparisons of such
features are suitable for evaluating the quality of fit. One
advantage of region based processing is that such features can
be quickly computed from the moments of pixel co-ordinates
of points belonging to each region. For instance, the area is
obtained as the ‘zero’-th moment and the centroid as the first

(b) *

L

Fig. 5. (a) Ellipses fitted by moment method to regions identified by CASRG. (b) Distribution of non-overlap statistic for CASRG regions with hand drawn

boundaries as reference.
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moment. The other parameters mentioned can be obtained
using an eigen decomposition of the ‘moments of inertia’, or
second moment matrix, of these points (Mulchrone and Roy
Choudhury, 2004). A graphical representation of these
features, in the form of fitted ellipses, is shown in Fig. Sa.

3.3. Strain analysis

The features described in Section 3.2 are often used for
strain analysis in structural geology. Therefore an application
specific validation of CASRG is by comparison of strain
estimates with the gold standard. A number of methods of finite
strain calculation appear in the literature (e.g. Robin, 1977; Yu
and Zheng, 1984; Robin and Torrance, 1987; Mulchrone and
Meere, 2001; Mulchrone et al., 2003). For reliable strain
calculation by the R¢¢ method, we need at least 150 clasts
(Meere and Mulchrone, 2003). For this purpose, we require
larger scale examples, which are considered in the next section.

4. Large scale examples

The photomicrograph in Fig. la is of sufficiently high
magnification so that problems associated with automated clast
boundary detection could be appreciated by visual inspection.
However, for reliable strain analysis, an example with far
greater number of clasts is required. For this purpose, we have
chosen two examples, one with low strain (Fig. 6a) and one
with high strain (Fig. 6d). The low strain example is an Upper
Devonian quartz arenite from the Variscides of southwest
Ireland, while the higher strain example is a deformed Cambro-
Ordovician quartzite from the Moine of northwest Scotland.
Although it is difficult to examine individual clasts in any
detail, it appears from visual inspection of Fig. 6c—f that
CASRG does a reasonable job of identifying the majority of the
clasts, although it is unsuccessful in a few. It should be noted
that the choice of clasts was first made during the process of
hand drawing the boundaries in Fig. 6¢c and e. CASRG was

< . “ :

Fig. 6. (a) Low strain example. (b) Low strain boundaries. (c) Low strain regions. (d) High strain example. (e) High strain boundaries. (f) High strain regions.
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subsequently applied on all the clasts selected in this process.
Given the large number of clasts in this example, it is not
feasible to discuss each of these clasts individually. Therefore
statistical methods are needed to check the correspondence
between the various methods.

4.1. Non-overlap comparisons

As described in Section 3.1, the fidelity of the regions
identified by the CASRG method (Fig. 6a and d) can be
measured by comparing them with the hand drawn boundaries
(Fig. 6b and e) using the non-overlap statistic. The distribution
of the resulting non-overlap values is given in Fig. 7. As can be
seen from the histograms (Fig. 7a and b), both distributions
have a heavily skewed shape, with the majority of values less
than 0.5, but a reasonable number greater than 0.5. The average
(median) non-overlap value for low strain is about 0.31, while
that for high strain is 0.37.

To explore the pattern of non-overlap values, we look at a
plot of the non-overlap value against the clast area (Fig. 7c and
d). The results are somewhat contradictory. In Fig. 7c, the plot
clearly shows that the non-overlap generally decreases with the
size of the clast. This is not unexpected, given that the non-
overlap statistic is a measure of relative error. It can be argued
that if the magnitude of error remains the same, the relative
error will decrease with increased size. A more mathematical
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discussion of this result is given by Mulchrone et al. (in
review). Even accounting for this decreasing trend, one set of
points in the extreme left of Fig. 7c stand out. These points
correspond to clasts of a very small size, which also have a very
high non-overlap value. This cluster of points contains all
clasts with a non-overlap value of 1 or more, with the exception
of two clasts of intermediate size. Clearly CASRG does not
identify such small clasts very well. It is a moot point whether
measurements made on these clasts by other methods also
suffer similarly. It can be argued (with some justification) that
any measurements made (by CASRG method) on these clasts
be treated with a pinch of salt. One option is to ignore such
clasts from all further calculations. In practice, the judgement
of which clasts to omit cannot be made on non-overlap values
(which cannot be computed as hand drawn boundaries will not
be available). An obvious alternative is to use the size of the
clast. Based on this observation, we suggest omitting clasts of
size 500 or lower. The size threshold for exclusion of clasts is
somewhat arbitrary, given that there are errors in all
automatically identified regions. This line of reasoning would
lead to calculations where observations are given weight
roughly proportional to the clast size, but for reasons of
conciseness, will not be pursued here. Another factor that can
cause poor identification is if the clasts are in extinction. In this
case, they are often hard to distinguish from the background,
which also appears dark (as it is a cross polar image).
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Fig. 7. (a) Histogram of non-overlap for low strain example. (b) Histogram of non-overlap for high strain example. (c) Variation of non-overlap against clast size for
low strain example. (d) Variation of non-overlap against clast size for high strain example.
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Fig. 8. Comparison of features of CASRG vs. hand drawn regions for low strain example.

371



372

(a)

CASRG

(©

CASRG

CASRG

K. Roy Choudhury et al. / Journal of Structural Geology 28 (2006) 363-375

=111 3 _ ]
Centroid-X
{in pixels)
ol ]
1] 3 ]
mf ]
r=0.99
10} ]
0 100 20 X0 &0 =) )
Hand Drawn
0 F T T T T T
oo}
00 b Area -
{in pixels)
b (1] 3
0 b
170 | .
oo} T r=0.94
.‘_.
om bk .:- ..:
% o 10 1m0 o = a0 0 40
Hand Drawn
|n T T 13 Y T
10} _ _ 4
Major Axis :
(in pixels) L
=11 8 g .
%0 “ -, 1
o} o it !
Iy ; ' 5 -
B r=0.91
ot |
0 £ ) 0 0 10 o

Hand Drawn

(b)

CASRG

CASRG

CASRG

o T 7
o § Centroid-Y A
wl (in pixels) )
1] 3 ]
=} g i
] .
'm o -
ol r=0.99 |
L2118 4
0 ™ N0 1% XO X0 X0 X0 40 &0
Hand Drawn
=118 o
WoF QOrientation -
(in degrees)
ot ]
1] 8 ’ o
. s
(1] . - ~ E
t 1] 8 p
e | r=0.74 :
<0} ]
<0} g
w0 <0 -0 W 0 M &£ @ 80
Hand Drawn
OF
Minor Axis
in pixel

ol (in pixels) : ]
Ok -
1] 8 ~
1] 8 -
10} ]

) 10 X 0 )
Hand Drawn

0

Fig. 9. Comparison of features of CASRG vs. hand drawn regions for high strain example.

1]



K. Roy Choudhury et al. / Journal of Structural Geology 28 (2006) 363-375 373

The average non-overlap value for such clasts is 0.53, which is
substantially higher than the overall average.

We now turn our attention to the plot for high strain
(Fig. 7d). The pattern is not quite the same, in that there are a
fair few large grains with larger non-overlap values and not that
many small grains with large overlap values. It should be noted
that the scale of these images is different: the low strain image
is 1200X 1600 pixels in size while the high strain image is
480X 640. Therefore the areas in Fig. 7d need to be multiplied
by a factor of 2.5X2.5=6.25 when comparing with Fig. 7c.
But that alone does not explain the relatively larger values of
non-overlap for the larger clasts. On examination of the image
in Fig. 6d, we see that there is a lot more undulose extinction in
this field of view compared with Fig. 6a, no doubt due the
presence of greater strain. Undulose extinction means that there
is systematic variation in colour from one part of the clast to the
other. This typically causes CASRG to leave out parts of the
clast that are different in colour from the area where the seed
lies. This leads to high non-overlap with the hand drawn
boundaries, because experts can in most cases differentiate
between undulose extinction and grain boundaries. The reason
this affects large clasts more than small ones is because large
clasts are more likely to suffer from undulose extinction than
smaller ones. Despite these problems for a number of clasts, it
is reassuring to note that the average non-overlap for the high
strain example (0.37) is only slightly higher than that of the low
strain example (0.31). One mitigating factor in this comparison
is that the high strain example has far fewer grains in
extinction, which caused the average performance in the low
strain case to suffer. Other factors that can cause poor
identification are polycrystalline clasts and neo-grain for-
mation. Clasts with a high concentration of inclusions would
also cause difficulties.

4.2. Comparison of features

Feature based comparisons are important from the viewpoint
of applications. These comparisons between features, namely
centroid, area, major and minor axis and orientation, extracted
from CASRG and hand drawn boundaries are shown in Figs. 8
and 9. As explained in Section 4.1, we have excluded very small
clasts (clasts with area less than 500 and 75, respectively, for the
low and high strain case) from these comparisons. The diagonal
line through these figures is the line y=x, which represents a
perfect match between two sets of measurements.

If we first look at Fig. 8, the low strain example, we can see
that there are roughly equal numbers of points on either side of
the line in all six plots. This indicates that one method does not
systematically over- or underestimate the parameters with
respect to the other method. Moreover, most points tend to be
very close to this line. This pattern gives rise to a high linear
correlation between the two sets of measurements. In
particular, the centroids obtained by both methods appear
virtually identical in most cases. The correlation between the
two measurements is less marked for the orientation parameter.
This is caused by some clasts for which the orientation
measurement differs widely, although most tend to agree.

Some of this disagreement is spurious, caused by the artificial
separation of +7/2 and —w/2. In actual terms, these two
orientations are the same. It is just that they cannot be
reconciled on a linear plot. Adjusting for these points will make
the correlation substantially higher (0.85). The other features,
namely size, major and minor axes, are all estimated very well.
In relation to the data itself, two observations that can be made
are: (a) the orientation plot appears to have an approximately
uniform spread of values between + /2 and —a/2; (b) the
range of values in the major and minor axes are close to each
other, indicating low axial ratio, as one would expect in a low
strain situation.

In Fig. 9 (high strain example), too, the correlations are all
very high except for the orientation, indicating good agreement
between CASRG and the hand drawn boundaries. Correlations
for the major and minor axes are slightly lower than those for
the low strain case. There appears to be a slight downward bias
in the CASRG y centroid measurements (most points in this
plot are below the line y=x). This could be an artefact caused
by resizing of the hand drawn boundary image, whose size is
enhanced to facilitate drawing. Despite this, the agreement in
the two sets of centroid measurements is still remarkable. In
relation to the data from the high strain example, we can note
that: (a) the range of orientations appears to be restricted
between +m/4 and — /4, indicating the presence of a strong
fabric. (b) The range of values in the major axes is roughly
double that of the minor axes indicating an axial ratio of two or
more.

4.3. Comparison by strain analysis

A number of methods of finite strain calculation appear in
the literature based on the shape characteristics of strain
markers (e.g. Robin, 1977; Yu and Zheng, 1984; Robin and
Torrance, 1987; Mulchrone and Meere, 2001; Mulchrone et al.,
2003) or based on the position of nearest neighbours (e.g. Fry,
1979; Mulchrone, 2003). Results of strain calculations done
using the algorithms given in Mulchrone et al. (2003) (mean
radial length) and Mulchrone (2003) (nearest neighbour) are
shown in Table 2. Calculations done using the other methods

Table 2
A comparison of finite strain estimates (R, ¢) using the method of Mulchrone
et al. (2003) from data acquired manually and using CASARG

R, (manual) R ¢ (manual) )

(CASARG) (CASARG)
Low strain
sample
Mean radial ~ (1.03) 1.08 (1.03) 1.09 (—44)131 (—43) —33
length (1.15) (1.16) (134) (133)
Centre to (1.01) 1.06 (0.01) 1.01 (—42) =15 (—42)38
centre (1.17) (1.14) (41 (42)
High strain
sample
Mean radial ~ (1.86) 1.98 (1.75) 1.85 (=2)—-1(2) (=5 —4
length (2.14) (1.98) (=1
Centre to (1.28) 1.70 (1.25) 1.66 (—=19)3(25) (=25 —2
centre (2.13) (2.08) (22)




374 K. Roy Choudhury et al. / Journal of Structural Geology 28 (2006) 363-375

mentioned gave similar results and are omitted for brevity.
Table 2 shows us that the R, value estimated using manual and
CASRG derived data are virtually identical. The wide
confidence interval for the ¢ parameter in the low strain case
is expected (Meere and Mulchrone, 2003). The remarkable
similarity of the strain results can be attributed to the fact that
strain calculation is, broadly speaking, an averaging procedure.
In the previous section, it was demonstrated by plots of the
measurements that there were no relative biases between the
methods. This combined with the averaging possibly leads to a
cancellation of relative errors. A formal error analysis is not
presented here.

5. Discussion and conclusions

The CASRG algorithm is an attempt to address what from
an image processing perspective is a difficult problem. As an
image, a sandstone microphotograph has quite complex
structure, both within and outside the clast components. Use
of colour information alone fails to deliver satisfactory grain
boundary detection. Other authors have addressed this problem
by injecting additional information, such as multiple images of
the same field of view (Heilbronner and Pauli, 1993;
Heilbronner, 2000) or orientation contrast images using SEM
(Bartozzi et al., 2000). Acquisition of such images is often a
tedious and time-consuming task. Moreover, it may require the
use of special equipment (such as specialised electron
microscopes) to which many geologists may not have access.
In the absence of such information, i.e. limiting ourselves to a
single microphotograph, we have attempted to derive
additional information by user input. The nature of input
required (seeding) is such that from the user’s perspective it is
quick, simple to perform and reasonably objective (i.e. user
independent). From an image processing point of view,
however, the seeding is very informative. It provides both a
starting point and a set of constraints that the resulting regions
must follow. Another strong point of this approach is that it
does not require the resulting clasts to be internally
homogenous (i.e. the region can have ‘holes’).

From an automation viewpoint, the strength of the CASRG
algorithm is that it does not require human intervention
subsequent to the seeding process. This is achieved by an
automatic choice of threshold, which in turn is derived from a
measure of homogeneity of the grain identified. In contrast,
other algorithms, such as the Lazy Grain Boundary method
proposed in Heilbronner (2000) or that in Bartozzi et al. (2000),
involve human intervention in a series of steps leading to grain
boundary detection. Ideally, one would like to eliminate the
seeding procedure as well, i.e. to have a completely automated
procedure. However, any such algorithm will not possess the
information inherent in seeding, thus making the problem that
much harder.

Measurements made from CASRG regions appear to be in
close agreement with those made by careful manual
measurement. However, it must be remembered that manual
measurements are themselves subject to error (Mulchrone
et al., in review). These observations are only empirical:

a theoretical analysis of the approximation qualities of CASRG
does not exist at present. There are obvious limitations to the
applicability of CASRG. It works in a scenario where the clasts
have (roughly) the same colour internally, i.e. for clasts such as
quartz grains. Thus it will fail in situations where clasts have a
more complicated structure, such as twinned feldspars. Even in
this limited setting, CASRG appears not to perform well in
certain situations. In particular, three situations that we have
noted are (a) when clast sizes are small, (b) when clasts are in
extinction and (c) when there is significant undulose extinction.
These problems can be significantly overcome by adopting a
seeding selection protocol that selects larger clasts that are
optically not in extinction and exhibit low internal contrast due
to undulose extinction. When one considers that the optimum
sample size for most stain analysis methods is less than 200
data points (Meere and Mulchrone, 2003), there should be no
difficulty in obtaining sufficiently large data sets with such a
protocol.

Like many automation processes, there is a trade-off here
between speed and accuracy. What the validation in Section 4
demonstrates is that within the limitations discussed above,
CASRG has the potential of saving time, with reasonably
accurate answers. This is particularly true in the context of the
features examined in Section 4.2. Although the CASRG
algorithm itself is quite computationally intensive (requiring
several minutes on a fast workstation), this time should not be a
consideration because (a) it requires no subsequent interven-
tion after the seeding and (b) this time will decrease with more
efficient algorithms and faster computers.

There are undoubtedly aspects of this algorithm that can be
improved by subsequent research. One possibility that suggests
itself is the incorporation of additional, case specific,
constraints. Also the nature of the algorithm is such that it
should prove relatively straightforward to extend it to
situations where we have more information, such as multiple
polarising angles.
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